Final Solutions

1. Suppose that the equation F'(z,y, z) = 0 implicitly defines each of the
three variables z, y, and z as functions of the other two:

z=f(z,y)y =9g(z,2),x = hy,2).
If F' is differentiable and F, F,, and F. are all nonzero, show that [10]
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Solution. From a Theorem on implicit differentiation done in class,
we have that
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From these three equations, we have
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2. Can we have a differentiable scalar field f : R? — R satisfying both of
the following conditions?

(a) The partial derivatives f,(0,0) = f,(0,0) =0, and
(b) the directional derivative f/(0;i 4 j) = 3.

Solution. Since f;(0,0) = f,(0,0) =0,
Vf(0,0) = f2(0,0)i + f,(0,0)) j = 0.
But the fact that f is differentiable would imply that
f1(0yi+5) = V£(0,0) - (i +j) =0,

which contradicts condition (b).



3. A cylinder whose equation is y = f(x) is tangent to the surface 22 +
2xz +y = 0 at all points common to the two surfaces. Find f(z).

Solution. Let F(z,y,2) = f(z) —y, G(z,y,2) = 22 + 22z +y, let S
denote the set of point common to the two surfaces. Since these two
surfaces are tangent to each other at each (z,y, z) € S, we have that

Vf(:v,y,z) ' Vg(a:,y,z) = 07 for (xvya Z) € S.

In other words,
(f'(x),—1,0) - (22,1,22 + 2x) = 0, for (z,y,2) € S,
where f’(x) = f,. Upon simplification, we have the ordinary differen-

tial equation

f/(;c) = %, for (z,y,2) € S.

In S, we must have
f(z) = —2% + 2z2.

Solving for z in terms of x from this quadratic equaation, we obtain
z=—x+22— f(z).

Therefore, f is solution to the ordinary differential equation
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4. Find three positive numbers whose sum is hundred and whose product
is a maximum.

Solution. Let z,y, 2 denote the three numbers. We need to maximize
f(x,y, z) = xyz, subject to the constraint g(x,y, z) = z+y+ 2z = 100.
Using the method of Lagrange’s multipliers, we obtain the following
system of equations (for some nonzero A € R)

Yz = A
xz = A
Ty = A

x4+ y+ 2z =100.



From this system of equations, we obtain the equivalent system

A = Ay = Az
r +y+ z=100.

Since A # 0, we have that * = y = 2, which upon substitution in
r+y+2=100yieldsz =y =z = %. It is easy to see that this is a

maximum, as f(98,1,1) < f(%,%,%).

5. Use Stokes’ Theorem to evaluate [, (y+sinz) dz+(22+cosy) dy+a* dz,
where C' is the curve r(t) = (sint, cost,sin 2t), t € [0, 27].

Solution. Let F(z,y,z) = Mi+ Nj + Pk = (y + sinz)i + (22 +
cosy)j + a2 j. Clearly, the components of F: M = y +sinz, N =
22 + cosy, P = 2 have continuous first partials everywhere in R3.
Furthermore, r(t) is a simple closed (r(0) = r(27)) and smooth curve
that lies on the smooth surface z = 2zy. Let S denote the part of the
surface z = 2zy bounded by r(t). Note that the projection of S onto
the xy-plane is the unit disk D centered at origin. Also, C' is traversed
clockwise (when viewed from above) and S is oriented downward. For
this S and C, the hypotheses of Stokes’ Theorem are satisfied.

By the Stokes’ Theorem, we have that
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By a simple calculation, n =

= T.

6. Use the Gauss’ Divergence Theorem to evaluate [[¢ F'-ndo, where
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and S is top half of the sphere 22 + y% + 22 = 1.

Solution. Let 57 denote the unit disk in the zy-plane centered at
origin. Then S’ = S U] is a piecewise smooth closed surface enclos-
ing a region £ € R3. Also, the components of F' : M = 2%z, N =
%3 +tan z, P = 2?2z + 32 have continuous first partials in an open set
containing D U S’ (as z # m/2 anywhere in D U S”"). Therefore, the
hypotheses of the Gauss’ Divergence Theorem are satisfied.

By the Gauss’ Divergence Theorem, we have that
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For S1, we have n = —k and z = 0, and so
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By a simple calculation V - F' = 22 + 32 + 22, and we have
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L F(xy) = — (ﬁ) 1+ (ﬁ) 4, show that ch-dr = 27 along
any counterclockwise oriented simple closed curve that encloses the
origin.

Finally,

Solution. Let C' be an arbitrary simple closed curve that encloses
the origin. Let C’ be a counterclockwise oriented circle with center
the origin and radius a, where a is chosen small enough so that C’
lies inside C'. Let D be the region bounded by C and C’. The the
positively oriented boundary of D is C'U (—C").



By the Circulation-Curl form of the Green’s Theorem, we have that
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In other words,
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Using the polar coordinates x = acosf and y = asin 6, we have that
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= 2.

. If F:R? — R3 is a vector field and f,g : R3 — R are scalar fields,
show that
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Solution. (a) Let F = M i+ N j+ Pk. Then
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(b) By the definition of the gradient, we have that
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9. Solve the differential equation
(2 + zy® +y) dx + (23 + 2%y + ) dy = 0.
Solution. From the equation, we have
P, =3y* + 2y + 1, Q, = 32° + 2zy + 1.

Clearly, the equation is not exact. We use an integrating factor of the
form h = h(u), where u = zy.
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Multiplying the differential equation by the integrating factor, we ob-
tain the following exact differential equation
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We denote these new coefficients of dr and dy by P’ and Q' respec-

tively. We choose xp = 39 = 1 so that the rectangle with vertices
x,To,Y, Yo lies entirely in the region

R={(z,y) € R*|z # 0 and y # 0},

where P’, @', and all of their first partial exist and are continuous.

A solution to this exact differential equation is given by
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10.

that is
1 1 1 1 1 1

27 oy T2 T2y Ty

which upon simplification yields the solution

y? 4 2xy + 227 + 2%y 4+ 1 = kay?.

(Bonus) Show that
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Solution. Let I = fooo e~*" dx. Then
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(This is due to the Fubini’s Theorem.)
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Converting this double integral into polar coordinates, we have
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We now use the substitution 2
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= u, to obtain

Therefore, I = @



