
Final Solutions

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the
three variables x, y, and z as functions of the other two:

z = f(x, y), y = g(x, z), x = h(y, z).

If F is differentiable and Fx, Fy, and Fz are all nonzero, show that [10]

∂z

∂x

∂x

∂y

∂y

∂z
= −1.

Solution. From a Theorem on implicit differentiation done in class,
we have that

∂z

∂x
= fx = −Fx

Fz
∂x

∂y
= hy = −Fy

Fx
∂y

∂z
= gz = −Fz

Fy

From these three equations, we have

∂z

∂x

∂x

∂y

∂y

∂z
= −1.

2. Can we have a differentiable scalar field f : R2 → R satisfying both of
the following conditions?

(a) The partial derivatives fx(0, 0) = fy(0, 0) = 0, and

(b) the directional derivative f ′(0; i+ j) = 3.

Solution. Since fx(0, 0) = fy(0, 0) = 0,

∇f(0, 0) = fx(0, 0) i+ fy(0, 0)) j = 0.

But the fact that f is differentiable would imply that

f ′(0; i+ j) = ∇f(0, 0) · (i+ j) = 0,

which contradicts condition (b).
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3. A cylinder whose equation is y = f(x) is tangent to the surface z2 +
2xz + y = 0 at all points common to the two surfaces. Find f(x).

Solution. Let F (x, y, z) = f(x) − y, G(x, y, z) = z2 + 2xz + y, let S
denote the set of point common to the two surfaces. Since these two
surfaces are tangent to each other at each (x, y, z) ∈ S, we have that

∇f(x, y, z) · ∇g(x, y, z) = 0, for (x, y, z) ∈ S.

In other words,

(f ′(x),−1, 0) · (2z, 1, 2z + 2x) = 0, for (x, y, z) ∈ S,

where f ′(x) = fx. Upon simplification, we have the ordinary differen-
tial equation

f ′(x) =
1

2z
, for (x, y, z) ∈ S.

In S, we must have
f(x) = −z2 + 2xz.

Solving for z in terms of x from this quadratic equaation, we obtain

z = −x±
√
x2 − f(x).

Therefore, f is solution to the ordinary differential equation

f ′(x) =
dy

dx
=

1

−x±
√
x2 − y

.

4. Find three positive numbers whose sum is hundred and whose product
is a maximum.

Solution. Let x, y, z denote the three numbers. We need to maximize
f(x, y, z) = xyz, subject to the constraint g(x, y, z) = x+ y+ z = 100.
Using the method of Lagrange’s multipliers, we obtain the following
system of equations (for some nonzero λ ∈ R)

yz = λ

xz = λ

xy = λ

x+ y + z = 100.
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From this system of equations, we obtain the equivalent system

λx = λy = λz

x+ y + z = 100.

Since λ 6= 0, we have that x = y = z, which upon substitution in
x+ y + z = 100 yields x = y = z = 100

3 . It is easy to see that this is a
maximum, as f(98, 1, 1) < f(1003 ,

100
3 ,

100
3 ).

5. Use Stokes’ Theorem to evaluate
∫
c(y+sinx) dx+(z2+cos y) dy+x3 dz,

where C is the curve r(t) = (sin t, cos t, sin 2t), t ∈ [0, 2π].

Solution. Let F (x, y, z) = Mi + Nj + Pk = (y + sinx) i + (z2 +
cos y) j + x3 j. Clearly, the components of F : M = y + sinx,N =
z2 + cos y, P = x3 have continuous first partials everywhere in R3.
Furthermore, r(t) is a simple closed (r(0) = r(2π)) and smooth curve
that lies on the smooth surface z = 2xy. Let S denote the part of the
surface z = 2xy bounded by r(t). Note that the projection of S onto
the xy-plane is the unit disk D centered at origin. Also, C is traversed
clockwise (when viewed from above) and S is oriented downward. For
this S and C, the hypotheses of Stokes’ Theorem are satisfied.

By the Stokes’ Theorem, we have that∫
C
F · dr = −

∫∫
S

(∇× F ) · ndσ.

By a simple calculation, n = 2y√
4x2+4y2+1

i+ 2x√
4x2+4y2+1

j− 1√
4x2+4y2+1

k

and F = −2z i− 3x2 j − k. Therefore,

−
∫∫

S
(∇× F ) · ndσ = −

∫∫
D

8xy2 + 6x3 − 1√
4x2 + 4y2 + 1

√
4x2 + 4y2 + 1dA

= −
∫∫

D
(8xy2 + 6x3 − 1) dA

= −
∫ 2π

0

∫ 1

0
(8r3 cos θ sin2 θ + 6r3 cos3 θ − 1)r drdθ

= π.

6. Use the Gauss’ Divergence Theorem to evaluate
∫∫
S F · ndσ, where

F (x, y, z) = z2x i+ (
y3

3
+ tan z) j + (x2z + y2) k
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and S is top half of the sphere x2 + y2 + z2 = 1.

Solution. Let S1 denote the unit disk in the xy-plane centered at
origin. Then S′ = S ∪ S1 is a piecewise smooth closed surface enclos-
ing a region E ∈ R3. Also, the components of F : M = z2x,N =
y3

3 + tan z, P = x2z + y2 have continuous first partials in an open set
containing D ∪ S′ (as z 6= π/2 anywhere in D ∪ S′). Therefore, the
hypotheses of the Gauss’ Divergence Theorem are satisfied.

By the Gauss’ Divergence Theorem, we have that∫∫
S′
F.n dσ =

∫∫
S
F.n dσ +

∫∫
S1

F.n dσ =

∫∫∫
E
∇ · F dV.

For S1, we have n = −k and z = 0, and so∫∫
S1

F.n dσ =

∫∫
S1

(−y2) dA

=

∫ 2π

0

∫ 1

0
r2(sin2 θ)r drdθ

= −π
4

By a simple calculation ∇ · F = x2 + y2 + z2, and we have∫∫∫
E
∇ · F dV =

∫ 2π

0

∫ π/2

0

∫ 1

0
ρ2ρ2 sinφdρ dφ dθ

=
2π

5

Finally, ∫∫
S
F.n dσ =

∫∫∫
E
∇ · F dV −

∫∫
S′
F.n dσ =

13π

20
.

7. If F (x, y) = −
(

y
x2+y2

)
i+
(

x
x2+y2

)
j, show that

∫
C F · dr = 2π along

any counterclockwise oriented simple closed curve that encloses the
origin.

Solution. Let C be an arbitrary simple closed curve that encloses
the origin. Let C ′ be a counterclockwise oriented circle with center
the origin and radius a, where a is chosen small enough so that C ′

lies inside C. Let D be the region bounded by C and C ′. The the
positively oriented boundary of D is C ∪ (−C ′).
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By the Circulation-Curl form of the Green’s Theorem, we have that∫
C
M dx+N dy +

∫
−C′

M dx+N dy =

∫∫
D

(
∂N

∂x
− ∂m

∂y

)
dA

=

∫∫
D

[
y2 − x2

(x2 + y2)2
− y2 − x2

(x2 + y2)2

]
dA

= 0.

In other words, ∫
C
M dx+N dy =

∫
C′
M dx+N dy.

Using the polar coordinates x = a cos θ and y = a sin θ, we have that∫
C′
M dx+N dy =

∫ 2π

0

(−a sin t)(−a sin t) + (a cos t)(a cos t)

a2 cos2 t+ a2 sin2 t
dt

= 2π.

8. If F : R3 → R3 is a vector field and f, g : R3 → R are scalar fields,
show that

(a) ∇ · (∇× F ) = 0.

(b) ∇
(
f

g

)
=
g∇f − f∇g

g2
, g 6= 0.

Solution. (a) Let F = M i+N j + P k. Then

∇× F =

(
∂P

∂y
− ∂N

∂z

)
i+

(
∂M

∂z
− ∂P

∂x

)
j +

(
∂N

∂x
− ∂M

∂y

)
k,

and hence

∇ · (∇× F ) =
∂

∂x

(
∂P

∂y
− ∂N

∂z

)
+

∂

∂y

(
∂M

∂z
− ∂P

∂x

)
+

∂

∂z

(
∂N

∂x
− ∂M

∂y

)
=

∂2P

∂x∂y
− ∂2N

∂x∂z
+
∂2M

∂y∂z
− ∂2P

∂y∂x
+
∂2N

∂z∂x
− ∂2M

∂z∂y

= 0.
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(b) By the definition of the gradient, we have that

∇
(
f

g

)
=

(
f

g

)
x

i+

(
f

g

)
y

j +

(
f

g

)
z

k

=

(
fxg − fgx

g2

)
i+

(
fyg − fgy

g2

)
j +

(
fzg − fgz

g2

)
k

=
g(fxi+ fyj + fzk)− f(gxi+ gyj + gzk)

g2

=
g∇f − f∇g

g2
.

9. Solve the differential equation

(y3 + xy2 + y) dx+ (x3 + x2y + x) dy = 0.

Solution. From the equation, we have

Py = 3y2 + 2xy + 1, Qx = 3x2 + 2xy + 1.

Clearly, the equation is not exact. We use an integrating factor of the
form h = h(u), where u = xy.

Let F (u) =
Py −Qx
yQ− xP

=
3(y2 − x2)
xy(x2 − y2)

= −3

u
. Then the integrating

factor

h(u) = e−
∫

3
u
du = u−3 =

1

x3y3
.

Multiplying the differential equation by the integrating factor, we ob-
tain the following exact differential equation(

1

x3
+

1

x2y
+

1

x3y2

)
dx+

(
1

y3
+

1

xy2
+

1

x2y3

)
dy = 0.

We denote these new coefficients of dx and dy by P ′ and Q′ respec-
tively. We choose x0 = y0 = 1 so that the rectangle with vertices
x, x0, y, y0 lies entirely in the region

R = {(x, y) ∈ R2 |x 6= 0 and y 6= 0},

where P ′, Q′, and all of their first partial exist and are continuous.

A solution to this exact differential equation is given by

f(x, y) =

∫ x

1

(
1

x3
+

1

x2y
+

1

x3y2

)
dx+

∫ y

1

(
1

y3
+

1

y2
+

1

y3

)
dy = 0,
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that is
1

2x2
+

1

xy
+

1

2x2y2
+

1

2y2
+

1

y
+

1

2y2
= c,

which upon simplification yields the solution

y2 + 2xy + 2x2 + 2x2y + 1 = kx2y2.

10. (Bonus) Show that ∫ ∞
0

e−x
2
dx =

√
π

2
.

Solution. Let I =
∫∞
0 e−x

2
dx. Then

I2 =

(∫ ∞
0

e−x
2
dx

)(∫ ∞
0

e−y
2
dy

)
=

∫ ∞
0

∫ ∞
0

e−(x
2+y2) dx dy.

(This is due to the Fubini’s Theorem.)

Converting this double integral into polar coordinates, we have

I2 =

∫ π/2

0

∫ ∞
0

e−r
2
r dr dθ.

We now use the substitution r2 = u, to obtain

I2 =
1

2

∫ π/2

0

∫ ∞
0

e−u du dθ

=
π

4
.

Therefore, I =
√
π
2 .
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