Final Solutions

1. Suppose that the equation $F(x, y, z)=0$ implicitly defines each of the three variables x, y, and z as functions of the other two:

$$
z=f(x, y), y=g(x, z), x=h(y, z) .
$$

If F is differentiable and F_{x}, F_{y}, and F_{z} are all nonzero, show that [10]

$$
\frac{\partial z}{\partial x} \frac{\partial x}{\partial y} \frac{\partial y}{\partial z}=-1 .
$$

Solution. From a Theorem on implicit differentiation done in class, we have that

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=f_{x}=-\frac{F_{x}}{F_{z}} \\
& \frac{\partial x}{\partial y}=h_{y}=-\frac{F_{y}}{F_{x}} \\
& \frac{\partial y}{\partial z}=g_{z}=-\frac{F_{z}}{F_{y}}
\end{aligned}
$$

From these three equations, we have

$$
\frac{\partial z}{\partial x} \frac{\partial x}{\partial y} \frac{\partial y}{\partial z}=-1 .
$$

2. Can we have a differentiable scalar field $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfying both of the following conditions?
(a) The partial derivatives $f_{x}(0,0)=f_{y}(0,0)=0$, and
(b) the directional derivative $f^{\prime}(0 ; i+j)=3$.

Solution. Since $f_{x}(0,0)=f_{y}(0,0)=0$,

$$
\left.\nabla f(0,0)=f_{x}(0,0) i+f_{y}(0,0)\right) j=0
$$

But the fact that f is differentiable would imply that

$$
f^{\prime}(0 ; i+j)=\nabla f(0,0) \cdot(i+j)=0,
$$

which contradicts condition (b).
3. A cylinder whose equation is $y=f(x)$ is tangent to the surface $z^{2}+$ $2 x z+y=0$ at all points common to the two surfaces. Find $f(x)$.
Solution. Let $F(x, y, z)=f(x)-y, G(x, y, z)=z^{2}+2 x z+y$, let S denote the set of point common to the two surfaces. Since these two surfaces are tangent to each other at each $(x, y, z) \in S$, we have that

$$
\nabla f(x, y, z) \cdot \nabla g(x, y, z)=0, \text { for }(x, y, z) \in S
$$

In other words,

$$
\left(f^{\prime}(x),-1,0\right) \cdot(2 z, 1,2 z+2 x)=0, \text { for }(x, y, z) \in S \text {, }
$$

where $f^{\prime}(x)=f_{x}$. Upon simplification, we have the ordinary differential equation

$$
f^{\prime}(x)=\frac{1}{2 z} \text {, for }(x, y, z) \in S .
$$

In S, we must have

$$
f(x)=-z^{2}+2 x z .
$$

Solving for z in terms of x from this quadratic equaation, we obtain

$$
z=-x \pm \sqrt{x^{2}-f(x)}
$$

Therefore, f is solution to the ordinary differential equation

$$
f^{\prime}(x)=\frac{d y}{d x}=\frac{1}{-x \pm \sqrt{x^{2}-y}} .
$$

4. Find three positive numbers whose sum is hundred and whose product is a maximum.

Solution. Let x, y, z denote the three numbers. We need to maximize $f(x, y, z)=x y z$, subject to the constraint $g(x, y, z)=x+y+z=100$. Using the method of Lagrange's multipliers, we obtain the following system of equations (for some nonzero $\lambda \in \mathbb{R}$)

$$
\begin{aligned}
y z & =\lambda \\
x z & =\lambda \\
x y & =\lambda \\
x+y+z & =100 .
\end{aligned}
$$

From this system of equations, we obtain the equivalent system

$$
\begin{aligned}
\lambda x & =\lambda y=\lambda z \\
x+y & +z=100 .
\end{aligned}
$$

Since $\lambda \neq 0$, we have that $x=y=z$, which upon substitution in $x+y+z=100$ yields $x=y=z=\frac{100}{3}$. It is easy to see that this is a maximum, as $f(98,1,1)<f\left(\frac{100}{3}, \frac{100}{3}, \frac{100}{3}\right)$.
5. Use Stokes' Theorem to evaluate $\int_{c}(y+\sin x) d x+\left(z^{2}+\cos y\right) d y+x^{3} d z$, where C is the curve $r(t)=(\sin t, \cos t, \sin 2 t), t \in[0,2 \pi]$.
Solution. Let $F(x, y, z)=M i+N j+P k=(y+\sin x) i+\left(z^{2}+\right.$ $\cos y) j+x^{3} j$. Clearly, the components of $F: M=y+\sin x, N=$ $z^{2}+\cos y, P=x^{3}$ have continuous first partials everywhere in \mathbb{R}^{3}. Furthermore, $r(t)$ is a simple closed $(r(0)=r(2 \pi))$ and smooth curve that lies on the smooth surface $z=2 x y$. Let S denote the part of the surface $z=2 x y$ bounded by $r(t)$. Note that the projection of S onto the $x y$-plane is the unit disk D centered at origin. Also, C is traversed clockwise (when viewed from above) and S is oriented downward. For this S and C, the hypotheses of Stokes' Theorem are satisfied.
By the Stokes' Theorem, we have that

$$
\int_{C} F \cdot d r=-\iint_{S}(\nabla \times F) \cdot n d \sigma
$$

By a simple calculation, $n=\frac{2 y}{\sqrt{4 x^{2}+4 y^{2}+1}} i+\frac{2 x}{\sqrt{4 x^{2}+4 y^{2}+1}} j-\frac{1}{\sqrt{4 x^{2}+4 y^{2}+1}} k$ and $F=-2 z i-3 x^{2} j-k$. Therefore,

$$
\begin{aligned}
-\iint_{S}(\nabla \times F) \cdot n d \sigma & =-\iint_{D} \frac{8 x y^{2}+6 x^{3}-1}{\sqrt{4 x^{2}+4 y^{2}+1}} \sqrt{4 x^{2}+4 y^{2}+1} d A \\
& =-\iint_{D}\left(8 x y^{2}+6 x^{3}-1\right) d A \\
& =-\int_{0}^{2 \pi} \int_{0}^{1}\left(8 r^{3} \cos \theta \sin ^{2} \theta+6 r^{3} \cos ^{3} \theta-1\right) r d r d \theta \\
& =\pi .
\end{aligned}
$$

6. Use the Gauss' Divergence Theorem to evaluate $\iint_{S} F \cdot n d \sigma$, where

$$
F(x, y, z)=z^{2} x i+\left(\frac{y^{3}}{3}+\tan z\right) j+\left(x^{2} z+y^{2}\right) k
$$

and S is top half of the sphere $x^{2}+y^{2}+z^{2}=1$.
Solution. Let S_{1} denote the unit disk in the $x y$-plane centered at origin. Then $S^{\prime}=S \cup S_{1}$ is a piecewise smooth closed surface enclosing a region $E \in \mathbb{R}^{3}$. Also, the components of $F: M=z^{2} x, N=$ $\frac{y^{3}}{3}+\tan z, P=x^{2} z+y^{2}$ have continuous first partials in an open set containing $D \cup S^{\prime}$ (as $z \neq \pi / 2$ anywhere in $D \cup S^{\prime}$). Therefore, the hypotheses of the Gauss' Divergence Theorem are satisfied.
By the Gauss' Divergence Theorem, we have that

$$
\iint_{S^{\prime}} F . n d \sigma=\iint_{S} F \cdot n d \sigma+\iint_{S_{1}} F . n d \sigma=\iiint_{E} \nabla \cdot F d V .
$$

For S_{1}, we have $n=-k$ and $z=0$, and so

$$
\begin{aligned}
\iint_{S_{1}} F . n d \sigma & =\iint_{S_{1}}\left(-y^{2}\right) d A \\
& =\int_{0}^{2 \pi} \int_{0}^{1} r^{2}\left(\sin ^{2} \theta\right) r d r d \theta \\
& =-\frac{\pi}{4}
\end{aligned}
$$

By a simple calculation $\nabla \cdot F=x^{2}+y^{2}+z^{2}$, and we have

$$
\begin{aligned}
\iiint_{E} \nabla \cdot F d V & =\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{1} \rho^{2} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\frac{2 \pi}{5}
\end{aligned}
$$

Finally,

$$
\iint_{S} F . n d \sigma=\iiint_{E} \nabla \cdot F d V-\iint_{S^{\prime}} F . n d \sigma=\frac{13 \pi}{20} .
$$

7. If $F(x, y)=-\left(\frac{y}{x^{2}+y^{2}}\right) i+\left(\frac{x}{x^{2}+y^{2}}\right) j$, show that $\int_{C} F \cdot d r=2 \pi$ along any counterclockwise oriented simple closed curve that encloses the origin.
Solution. Let C be an arbitrary simple closed curve that encloses the origin. Let C^{\prime} be a counterclockwise oriented circle with center the origin and radius a, where a is chosen small enough so that C^{\prime} lies inside C. Let D be the region bounded by C and C^{\prime}. The the positively oriented boundary of D is $C \cup\left(-C^{\prime}\right)$.

By the Circulation-Curl form of the Green's Theorem, we have that

$$
\begin{aligned}
\int_{C} M d x+N d y+\int_{-C^{\prime}} M d x+N d y & =\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial m}{\partial y}\right) d A \\
& =\iint_{D}\left[\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}-\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right] d A \\
& =0
\end{aligned}
$$

In other words,

$$
\int_{C} M d x+N d y=\int_{C^{\prime}} M d x+N d y
$$

Using the polar coordinates $x=a \cos \theta$ and $y=a \sin \theta$, we have that

$$
\begin{aligned}
\int_{C^{\prime}} M d x+N d y & =\int_{0}^{2 \pi} \frac{(-a \sin t)(-a \sin t)+(a \cos t)(a \cos t)}{a^{2} \cos ^{2} t+a^{2} \sin ^{2} t} d t \\
& =2 \pi
\end{aligned}
$$

8. If $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a vector field and $f, g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ are scalar fields, show that
(a) $\nabla \cdot(\nabla \times F)=0$.
(b) $\nabla\left(\frac{f}{g}\right)=\frac{g \nabla f-f \nabla g}{g^{2}}, g \neq 0$.

Solution. (a) Let $F=M i+N j+P k$. Then

$$
\nabla \times F=\left(\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z}\right) i+\left(\frac{\partial M}{\partial z}-\frac{\partial P}{\partial x}\right) j+\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) k
$$

and hence

$$
\begin{aligned}
\nabla \cdot(\nabla \times F) & =\frac{\partial}{\partial x}\left(\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z}\right)+\frac{\partial}{\partial y}\left(\frac{\partial M}{\partial z}-\frac{\partial P}{\partial x}\right)+\frac{\partial}{\partial z}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{\partial^{2} P}{\partial x \partial y}-\frac{\partial^{2} N}{\partial x \partial z}+\frac{\partial^{2} M}{\partial y \partial z}-\frac{\partial^{2} P}{\partial y \partial x}+\frac{\partial^{2} N}{\partial z \partial x}-\frac{\partial^{2} M}{\partial z \partial y} \\
& =0
\end{aligned}
$$

(b) By the definition of the gradient, we have that

$$
\begin{aligned}
\nabla\left(\frac{f}{g}\right) & =\left(\frac{f}{g}\right)_{x} i+\left(\frac{f}{g}\right)_{y} j+\left(\frac{f}{g}\right)_{z} k \\
& =\left(\frac{f_{x} g-f g_{x}}{g^{2}}\right) i+\left(\frac{f_{y} g-f g_{y}}{g^{2}}\right) j+\left(\frac{f_{z} g-f g_{z}}{g^{2}}\right) k \\
& =\frac{g\left(f_{x} i+f_{y} j+f_{z} k\right)-f\left(g_{x} i+g_{y} j+g_{z} k\right)}{g^{2}} \\
& =\frac{g \nabla f-f \nabla g}{g^{2}} .
\end{aligned}
$$

9. Solve the differential equation

$$
\left(y^{3}+x y^{2}+y\right) d x+\left(x^{3}+x^{2} y+x\right) d y=0 .
$$

Solution. From the equation, we have

$$
P_{y}=3 y^{2}+2 x y+1, Q_{x}=3 x^{2}+2 x y+1 .
$$

Clearly, the equation is not exact. We use an integrating factor of the form $h=h(u)$, where $u=x y$.
Let $F(u)=\frac{P_{y}-Q_{x}}{y Q-x P}=\frac{3\left(y^{2}-x^{2}\right)}{x y\left(x^{2}-y^{2}\right)}=-\frac{3}{u}$. Then the integrating factor

$$
h(u)=e^{-\int \frac{3}{u} d u}=u^{-3}=\frac{1}{x^{3} y^{3}} .
$$

Multiplying the differential equation by the integrating factor, we obtain the following exact differential equation

$$
\left(\frac{1}{x^{3}}+\frac{1}{x^{2} y}+\frac{1}{x^{3} y^{2}}\right) d x+\left(\frac{1}{y^{3}}+\frac{1}{x y^{2}}+\frac{1}{x^{2} y^{3}}\right) d y=0 .
$$

We denote these new coefficients of $d x$ and $d y$ by P^{\prime} and Q^{\prime} respectively. We choose $x_{0}=y_{0}=1$ so that the rectangle with vertices x, x_{0}, y, y_{0} lies entirely in the region

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid x \neq 0 \text { and } y \neq 0\right\},
$$

where P^{\prime}, Q^{\prime}, and all of their first partial exist and are continuous.
A solution to this exact differential equation is given by
$f(x, y)=\int_{1}^{x}\left(\frac{1}{x^{3}}+\frac{1}{x^{2} y}+\frac{1}{x^{3} y^{2}}\right) d x+\int_{1}^{y}\left(\frac{1}{y^{3}}+\frac{1}{y^{2}}+\frac{1}{y^{3}}\right) d y=0$,
that is

$$
\frac{1}{2 x^{2}}+\frac{1}{x y}+\frac{1}{2 x^{2} y^{2}}+\frac{1}{2 y^{2}}+\frac{1}{y}+\frac{1}{2 y^{2}}=c
$$

which upon simplification yields the solution

$$
y^{2}+2 x y+2 x^{2}+2 x^{2} y+1=k x^{2} y^{2}
$$

10. (Bonus) Show that

$$
\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}
$$

Solution. Let $I=\int_{0}^{\infty} e^{-x^{2}} d x$. Then

$$
I^{2}=\left(\int_{0}^{\infty} e^{-x^{2}} d x\right)\left(\int_{0}^{\infty} e^{-y^{2}} d y\right)=\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y
$$

(This is due to the Fubini's Theorem.)
Converting this double integral into polar coordinates, we have

$$
I^{2}=\int_{0}^{\pi / 2} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta
$$

We now use the substitution $r^{2}=u$, to obtain

$$
\begin{aligned}
I^{2} & =\frac{1}{2} \int_{0}^{\pi / 2} \int_{0}^{\infty} e^{-u} d u d \theta \\
& =\frac{\pi}{4}
\end{aligned}
$$

Therefore, $I=\frac{\sqrt{\pi}}{2}$.

